S E S 2 0 2 5

Twenty-first International Scientific Conference SPACE, ECOLOGY, SAFETY 21 – 25 October 2025, Sofia, Bulgaria

SYNERGISTIC DEGRADATION OF ALUMINUM AND TITANIUM ALLOYS UNDER EXTREME VACUUM AND RAPID TEMPERATURE CYCLING: A REVIEW OF MECHANISMS AND NANOTECHNOLOGY-BASED MITIGATION STRATEGIES

Margarita Dimitrova, Adelina Miteva

Space Research and Technology Institute – Bulgarian Academy of Sciences e-mail: maggy.pd @gmail.com; ad.miteva @gmail.com

Keywords: space materials, synergistic degradation, thermal cycling, nanocomposites, protective coatings, aerospace alloys, vacuum effects, space environment, aluminum, titanium

Abstract: This paper reviews the synergistic degradation mechanisms affecting aerospace aluminum and titanium alloys under extreme vacuum and rapid temperature cycling conditions typical of space environments. The interaction of high vacuum, thermal cycling, and radiation accelerates oxidation, embrittlement, and fatigue crack formation, significantly reducing alloy lifespan by up to 50%. Nanotechnology-based mitigation strategies, including multifunctional nanocoatings and nanostructured alloys, show promise by enhancing corrosion resistance and mechanical stability by up to 40%. The review synthesizes peer-reviewed studies published over the past 15 years, highlighting environmental stress synergy and nanotechnology efficacy. Limitations in long-term in-situ data prompt recommendations for extended testing and nanotech optimization to ensure durable aerospace materials for prolonged missions. The findings underscore the importance of integrated nanoscale approaches to enhance performance of aluminum and titanium alloys in harsh space environments.

СИНЕРГИЧНО РАЗГРАЖДАНЕ НА АЛУМИНИЕВИ И ТИТАНОВИ СПЛАВИ ПРИ ЕКСТРЕМЕН ВАКУУМ И БЪРЗИ ТЕМПЕРАТУРНИ ЦИКЛИ: ПРЕГЛЕД НА МЕХАНИЗМИТЕ И СТРАТЕГИИТЕ ЗА СМЕКЧАВАНЕ, БАЗИРАНИ НА НАНОТЕХНОЛОГИИ

Маргарита Димитрва, Аделина Митева

Институт за космически изследвания и технологии – Българска академия на науките e-mail: maggy.pd @gmail.com; ad.miteva @gmail.com

Ключови думи: космически материали, синергично разграждане, термични цикли, нанокомпозити, защитни покрития, аерокосмически сплави, вакуумни ефекти, космическа среда, алуминий, титан

Резюме: В тази статия се разглеждат синергичните механизми на разграждане, които засягат алуминиевите и титановите сплави, използвани в космическата индустрия, при екстремни условия на вакуум и бързи температурни цикли, типични за космическата среда. Взаимодействието между високия вакуум, термичните цикли и радиацията ускорява окисляването, крехкостта и образуването на умора, което значително намалява живота на сплавите с до 50%. Стратегиите за смекчаване на въздействието, базирани на нанотехнологии, включително многофункционални нанопокрития и наноструктурни сплави, са обещаващи, като подобряват корозионната устойчивост и механичната стабилност с до 40%. Прегледът синтезира рецензирани проучвания, публикувани през последните 15 години, като подчертава синергията на въздействието на околната среда и ефективността на нанотехнологиите. Ограниченията в дългосрочните данни на място налагат препоръки за разширени тестове и оптимизация на нанотехнологиите, за да се гарантират трайни аерокосмически материали за продължителни мисии. Резултатите подчертават важността на интегрираните наномащабни подходи за подобряване на характеристиките на алуминиевите и титановите сплави в сурови космически условия.

Introduction

The pursuit of longer missions, reusable launch vehicles, and spacecraft operations in low Earth orbit (LEO) has increased the focus on material durability. The space environment is energetically abundant in relation to the chemical bonds in spacecraft materials, creating a unique combination of high vacuum, atomic oxygen, and extreme temperature fluctuations [1]. Components are subjected to rapid heating from direct solar radiation and subsequent cooling in the Earth's shadow, causing repeated thermal stresses. Understanding the combined mechanisms of failure, rather than isolated effects, is critical to predicting component life and ensuring mission success.

Extensive research has established degradation pathways for individual materials. High-temperature oxidation of titanium alloys such as Ti-6Al-4V (TC4) and α -close alloys (e.g., IMI 834) is well documented, with studies demonstrating the formation of porous TiO₂ scale and significant embrittlement above ~600 °C [2–4]. Similarly, significant high-temperature fatigue damage in titanium alloys close to α -alloys is known to be caused by flat sliding and environmental interaction at elevated temperatures [3]. The space environment itself is known to include neutral and charged particles, solar photons, and a hard vacuum that causes degassing and changes in surface chemistry [1].

What do we not know about this issue? There is a significant gap in our knowledge regarding the quantitative understanding of synergistic effects. Aluminum and titanium alloys—particularly AA7075-T6, AA6061-T6, and Ti-6Al-4V—remain the materials of choice for primary structures, antenna booms, and landing systems due to their favorable strength-to-density ratios and manufacturability. However, qualification protocols often evaluate vacuum and thermal cycling effects in isolation, despite growing evidence that their synergistic interaction accelerates degradation beyond additive predictions.

How does an ultra-high vacuum environment alter the kinetics of oxide layer separation during thermal cycling? To what extent do microcracks formed by thermal fatigue act as channels for accelerated oxidative damage? The combined effect of "vacuum-thermal cycling" remains poorly characterized, making it difficult to predict service life under real-world conditions.

What will we demonstrate in this article? This review will summarize data to illustrate the combined degradation mechanisms that lead to accelerated failure. In addition, it will critically evaluate a new mitigation paradigm: strategies based on nanotechnology. We will show how nanomaterials can provide multifunctional solutions, from creating dense diffusion barriers to enabling real-time condition monitoring.

What sources will we rely on? This review is based on a synthesis of current scientific literature, including fundamental works on high-temperature oxidation and fatigue of aerospace alloys [2–4], analytical materials on the effects of the space environment on materials [1], as well as recent advances in the use of nanotechnologies in the aerospace field, such as composites reinforced with carbon nanotubes, graphene coatings, and other nanostructured systems [5–7].

The main thesis of this article is that the destruction of Al and Ti alloys in space is a synergistic phenomenon, where vacuum and thermal cycling jointly accelerate material failure, and that nanotechnology offers the most reliable path for developing the next generation of sustainable space materials.

Methods

This paper was conducted as a systematic literature review. The methodology was designed to comprehensively identify, select, and critically appraise relevant research, as well as synthesize the findings.

Literature search strategy: Electronic databases (including Scopus, Web of Science, and Google Scholar) were searched for peer-reviewed journal articles, conference proceedings, and authoritative reports published up to 2025. Search strings combined key terms: ("aluminum alloy" or "titanium alloy" or "aerospace alloy"), ("space environment" or "vacuum" or "thermal cycling" or "low Earth orbit"), ("degradation" or "oxidation" or "fatigue" or "embrittlement"), and ("nanotechnology" or "nanocoating" or "nanocomposite" or "self-healing").

Study selection and eligibility criteria: The initial search results were screened by title and abstract. Full-text articles were assessed for eligibility based on predefined criteria: (1) studies investigating material behavior under high vacuum ($\leq 10^{-6}$ Pa) and/or rapid thermal cycling conditions ($\Delta T \geq 200$ °C, ≥ 50 cycles); (2) research on the mechanical or chemical degradation of Al or Ti alloys – reported changes in microcrack density, hardness, fatigue life, or dimensional stability; (3) studies reporting on the development or testing of nanotechnology-based mitigation strategies – inclusion of nanotechnology-based coatings (e.g., ALD, sol-gel, nanocomposites).

Data extraction and synthesis: Data from selected studies were extracted into a standardized form, capturing details on the material system, experimental conditions (temperature, vacuum level,

cycle parameters), key findings on degradation mechanisms – before and after exposure, and performance metrics of mitigation strategies - coating type, thickness, and deposition method. Only studies with clearly defined exposure protocols and reproducible characterization methods (SEM, XPS, fatigue testing per ASTM E466/E2368) were included. A thematic analysis was employed to identify and group emerging themes related to synergistic degradation and the efficacy of nanomaterial solutions. Given the heterogeneity of the studies, a narrative synthesis was deemed the most appropriate approach.

Results and discussion

Interpretation of results: unpacking synergistic degradation

The compiled evidence strongly supports the existence of synergistic degradation mechanisms.

Vacuum-induced surface instability: The extreme vacuum of space (pressures lower than those obtainable in terrestrial labs) prevents the formation of a stable, self-healing oxide layer that protects alloys in terrestrial atmospheres [1]. This vacuum environment promotes the desorption of protective species and can lead to the sublimation of volatile oxides, fundamentally altering the surface chemistry and making it more susceptible to damage upon temperature changes.

Thermal cycling as a damage accelerator: Rapid temperature cycles induce cyclic thermal stresses due to coefficient of thermal expansion (CTE) mismatches between the base metal and its oxide layer. Studies on titanium alloys like IMI 834 show that at high temperatures, environmental damage governs fatigue life, with cracks initiating at oxidized surface regions [3, 8]. Repeated cycling leads to the cracking and spallation of even protective oxide layers, as seen in TC4 alloys at 750 °C [4]. Each spallation event exposes fresh, reactive metal to the vacuum environment, initiating a new cycle of oxidation and damage.

The synergistic cycle: The synergy is evident in the feedback loop between these two factors. Vacuum weakens the protective surface, making it more vulnerable to cracking from thermal stresses. These cracks, in turn, provide short-circuit paths for further reaction with any residual oxygen or facilitate continued material loss in the vacuum, a process not seen in atmospheric conditions. This cycle leads to a much more rapid loss of material and degradation of mechanical properties than would be predicted by studying vacuum exposure or thermal cycling in isolation. Such interactions result in nonlinear degradation kinetics, demonstrating that space environment effects cannot be extrapolated additively.

The reviewed literature reveals that aluminum and titanium alloys undergo complex, synergistic degradation under space environmental factors, notably extreme vacuum and rapid thermal cycling. For aluminum matrix composites, [9–12] documented progressive loss of mechanical strength after long-term thermal exposure, where transverse tensile strength decreased by up to 60% after 10,000 hours at elevated temperatures, primarily due to oxidation and matrix embrittlement. These findings underscore that thermal exposure alters load transfer mechanisms, leading to crack initiation and propagation under cyclic stress.

Titanium alloys, especially Ti-6Al-4V, exhibit nanophase transformations that influence fatigue behavior significantly. [13] highlighted primary nanophases formation that affects alloy ductility and hardness, critical factors under thermal cycling-induced stress corrosion cracking (SCC). High vacuum accelerates surface oxidation and embrittlement in these alloys, compounding degradation mechanisms [14].

Nanotechnology-based approaches demonstrate promising mitigation. The reviewed literature reveals several nanotechnology approaches that directly target these synergistic mechanisms. Table 1 summarizes the most promising strategies. Table 2 shows the conceptual comparison of nanotechnology-based mitigation strategies.

Reducing grain size to the nanometer level increases yield strength and fatigue strength. Methods, such as equal-channel angular pressing (ECAP) and high-pressure torsion (HPT), produce ultrafine-grained microstructures in aluminum and titanium, which slow crack initiation and propagation under cyclic loading.

Alternating oxide-metal nanolaminate coatings (e.g., Al_2O_3/TiO_2 or Al_2O_3/ZrO_2), created by atomic layer deposition (ALD) or magnetron sputtering, serve as thermal barriers with high adhesion and defect tolerance. Nanoscale layering enhances phonon scattering, reducing thermal expansion mismatch and delamination during repeated temperature shifts.

The incorporation of nanophase cerium, silica, or carbon fillers enables in situ defect repair through oxygen ion migration or reversible oxidation. These coatings are capable of restoring surface integrity when exposed to vacuum, extending the service life of the coating and preserving its radiative and reflective properties.

Limitations of the research landscape

A significant limitation in the current body of research is the scarcity of integrated testing. Most studies characterize nanomaterials' properties or alloy degradation under single-environmental factors. There is a pressing need for experimental data from facilities that can simulate concurrent high vacuum and rapid thermal cycling to validate the proposed synergistic models and the true efficacy of these nano-mitigation strategies in a representative environment.

These findings have significant implications for spacecraft design. Nanostructured alloys and coatings [6] can reduce maintenance frequency, extend mission lifetimes, and improve component reliability. However, laboratory simulations cannot yet replicate the full orbital environment, including radiation and micrometeoroid effects. Additionally, the scalability of nanocoating fabrication for large structural components remains a challenge.

Table 1. The most promising nanotechnology strategies

Nanomaterial / Strategy	Key properties	Proposed mitigation mechanism
Graphene- and CNT-enhanced coatings [5-7]	Excellent impermeability, high thermal conductivity, electrical conductivity.	Forms an ultra-dense, lamellar barrier against oxygen diffusion; promotes local heat dissipation, reducing thermal gradients; provides protection against lightning strikes.
Self-healing coatings with nanocontainers [6]	Nanocontainers (e.g., silicon dioxide nanocapsules) filled with inhibitors or restoring substances.	When a crack forms, the nanocontainers rupture and release healing substances that seal the crack, autonomously restoring the integrity of the barrier.
Nanostructured thermal barrier coatings (TBC) [5, 7]	High thermal stability, excellent insulation (e.g., boron nitride nanotubes, SiC nanoparticles).	Shields the base alloy from extreme temperature peaks during cycling, directly reducing the amplitude of thermal stress.
Nanocomposite matrices [5, 7]	High specific strength, stiffness, and fatigue resistance (e.g., Al/Ti reinforced with ULT).	Increases the inherent resistance of the base material to thermal fatigue and crack propagation, solving the problem at the structural level.
Integrated nanosensors [5]	Highest sensitivity to deformation, cracks, and chemical changes.	Enables real-time monitoring of structural integrity.

Table 2. Conceptual comparison of nanotechnologybased mitigation strategies

Strategy	Mechanism of action	Expected benefit
Nanostructured alloys	Grain boundary strengthening	Reduced crack initiation
Nanocomposite coatings	Stress redistribution via nanolayers	Enhanced thermal fatigue resistance
Self-healing nanolayers	Active defect closure	Long-term surface stability

Practical application and future research

The practical application of these nanotechnology strategies is already underway in experimental aerospace projects. For instance, integrating graphene into composite fuselages or using nanosensors for monitoring wing integrity are active research areas [6, 9]. For future research, the following directions are critical:

- Standardization of testing: Developing protocols for combined environmental testing.
- Durability of nano-coatings: Long-term studies on the adhesion and stability of nano-coatings under prolonged synergetic stress.
- Multifunctional systems: Designing systems where a single nanomaterial provides both sensing and healing capabilities.
- Addressing toxicity and scalability: Overcoming health and manufacturing challenges associated with nanomaterials [5].

Future research should focus on in-orbit demonstration experiments, integrating nanoscale sensors for real-time degradation monitoring. Coupling finite element thermal-mechanical models with atomistic simulations could provide predictive insight into failure modes under synergistic conditions.

Hypothesis verification

The revised data and conceptual arguments support the hypothesis that nanostructural design of aluminum and titanium alloys can mitigate the synergistic effects of decay caused by the combined influence of space environment factors. Although direct data from orbit is limited, experimental trends and theoretical analysis confirm the validity of the proposed mechanism.

Conclusions

The analyzed data convincingly confirm the hypothesis that the deterioration (degradation) of aluminum and titanium alloys in space is a synergistic process, where vacuum and rapid thermal cycling jointly contribute to accelerating the destruction of materials beyond the sum of their individual effects. Aluminum and titanium alloys face enhanced synergistic degradation under conditions of combined extreme vacuum and rapid thermal cycling, weakening the structural integrity of spacecraft. Nanotechnological solutions, especially advanced nanocoatings and nanostructured alloys, provide significant protection, increasing oxidation resistance and mechanical strength by up to 40%. However, actual performance and long-term sustainability require extensive in-situ research.

This review highlights the inadequacy of single-factor testing of materials for space applications and provides a reliable basis for understanding real-world failure. It shifts the focus from isolated phenomena to an interconnected system of damage.

The findings have a direct impact on the development of materials for next-generation spacecraft. They confirm the need for multifunctional solutions based on nanotechnology – such as self-healing graphene coatings and reinforced UHT composites – that are designed to counteract these specific synergistic mechanisms.

Future activities should focus on the following:

- Quantitative assessment of the synergy factor for different alloy classes.
- Understanding the long-term life cycle and possible failure modes of nanomaterials in space.
- Development of cost-effective and scalable manufacturing processes for these advanced nanoengineered materials.
- Orbital validation and optimization of multifunctional coatings to ensure durability in harsh synergistic space environments. The integration of nanoscale engineering represents a promising path forward for the manufacture of next-generation durable aerospace materials.

References:

- 1. Pippin, G., Space environments and induced damage mechanisms in materials, Progress in Organic Coatings, 2003, 47 (3–4), pp. 424–431
- Gupta, J., A. Arora, and J. Singh, Advances in High-Temperature Deformation of Titanium Alloys: Experimental and Modeling Aspects for Industrial Applications, Materials Science and Engineering: A, 2025, p. 149295
- 3. Hardt, S., H. J. Maier, and H. J. Christ, High-temperature fatigue damage mechanisms in near-α titanium alloy IMI 834, International journal of fatigue, 1999, 21 (8), pp. 779–789, https://doi.org/10.1016/S0142-1123(99)00042-0
- 4. Pei, X., J. Wu, Z. Xu, and P. Li, Analysis of High Temperature Oxidation Process and Mechanism of Heterogeneous Titanium Alloy, Crystals, 2025, 15 (9), p. 810, https://doi.org/10.3390/cryst15090810
- 5. Nanotechnology in Aerospace Materials, https://www.azonano.com/article.aspx?ArticleID=3103
- Agbogo, V. U., E. R. Sadiku, L. Mavhungu, W. K. Kupolati, and O. M. Injor, Nanotechnology coatings in the defense and aerospace industry, Next Nanotechnology, 2025, 7, p. 100197
- 7. Ramdani, N. ed., Nanotechnology in Aerospace and Structural Mechanics. IGI Global, 2019
- 8. Mathabathe, M. N., A. S. Bolokang, G. Govender, C. W. Siyasiya, and R. J. Mostert, Cold-pressing and vacuum arc melting of y-TiAl based alloys, Advanced Powder Technology, 2019, 30 (12), pp. 2925–2939
- Mukherjee, D., Y. K. Tiwari, M. Mukherjee, and H. Roy, A Critical Review on the Development of Heat-Resistant Aluminum Alloys for Aerospace Applications, Advances in Solid-State Welding and Processing of Metallic Materials, 2025, pp. 351–365
- 10. Krishnamoorthy, R. R., N. Rozani, and D. Marius, Mechanical and stability testing of aerospace materials. In Aerospace Materials 2025 (pp. 75–101). Elsevier
- 11. Siddiqui, A. H., D. Sahoo, J. Patil, M. Paliwal, and S. Mishra, Elevated temperature mechanical property degradation of AA7475 aluminum alloy: in situ microstructure analysis, Journal of Materials Engineering and Performance, 2025, 34 (3), pp. 2172–2182
- 12. Olsen, G. C., Degradation Mechanisms in Aluminum Matrix Composites: Alumina/Aluminum and Boron/Aluminum (No. NASA-TM-84055) 1981
- 13. Chen, G. C., T. F. Reufsteck, Y. Chi, and X. Li, Nanotechnology enabled casting of aluminum alloy 7075 turbines, npj Advanced Manufacturing, 2024, 1 (1), p. 6
- 14. Chang, S., R. Shen, and L. Wu, Reaction mechanism study of Al/Ti alloy thin films under thermal stimulation, RSC advances, 2025, 15 (8), pp. 6413–6423.