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Abstract: Digital Terrain Models (DTMs) offer a robust framework for quantitative landform analysis by
integrating high-resolution elevation data and morphometric parameters. This study applies the unsupervised
nested-means algorithm to classify the topography of Bulgaria (47°714' and 44°13' N; 22°21' and 28°36' E) into
sixteen distinct terrain surface types, based on slope gradient, surface convexity, and texture. Each morphometric
class is further evaluated using the box-counting method for estimating fractal dimension (D), as a measure of
surface complexity. The results reveal a strong correlation between slope steepness, texture fineness, and
convexity with the fractal dimension, indicating that steeper and fine-textured terrains with high convexity exhibit
higher degrees of geomorphological complexity. Conversely, gentle slopes with fine texture display the lowest D
values, signifying smoother terrain morphology. The classification highlights the heterogeneous nature of
Bulgaria’s terrain, shaped by tectonic, erosional, and depositional processes.
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Pe3stome: Llugpposume modenu Ha penegpa (Digital Terrain Models, DTMs) npedocmassam HadexOHa
OCHOBa 3a KosludecmeeH MOpghOMempuyeH aHanu3 4Ype3 uHmezpupaHe Ha OaHHU C eucoka pasdenumersnHa
criocobHocm 3a HadMopckama eucoquHa u perniechHu napamempu. B Hacmosiwoomo u3cnedsaHe e rnpurnoxeH
anzopumbMbM Ha HeHabnwdasaHu 6510XeHU cpedHuU cmolHocmu (unsupervised nested-means algorithm) 3a
KknacuguyupaHe Ha penega Ha bwbreapus (41°14' — 44°13' N; 22°21' — 28°36' E) 8 wecmHadecem
mMopghomempuyHO 0b6ocobeHu muna noebpxHocmu, 0ehuHupaHu Ha basa HaK/IOH, U3MbKHA/IOCm U mekcmypa.
Bcsika om knacoseme e OonbrHUMENHO oueHeHa 4Ype3 memoda Ha 6poeHe 8 kymuu (box-counting) 3a
usyucrnisieaHe Ha ¢hpakmarnHama pasmepHocm (D) kamo UHOUKamop 3a CIOXHOCM Ha perneghHama rnoebPXHOCM.
Pesynmamume paskpusam omyemjsiuea Kopenauyusi Mexoy cmpbMHOCM, MeKcmypHa ¢ouUHOCM U U3MbKHaIocm
c hpakmarnHama pasmMepHOCM, Kamo fokazeam, 4e CmpbMHUME, (hUHHO-MeKCmypupaHU U CUSTHO U3MbKHasU
mepeHU ce xapakmepusupam C 0-8Uucoka cmerneH Ha 2eoMopghorioxka crioxHocm. ObpamHo, nonesamume
CKJIOHO8e C ro-2iiadka mekcmypa deMoHcmpupam Hal-HUcku cmolHocmu Ha D, koemo ceudemericmea 3a rio-
usenadeHa mopgponozusi. Knacugukayusima noddyepmasa xemepoz2eHHUsT xapakmep Ha Obrizapckusi perneg,
pe3ynmam om e3aumodelicmauemo Mex0y MEKMOHCKU, EPO3UOHHU U ceQUMeHMAaUUOHHU MPoyecu.

Introduction

Digital Terrain Modelling (DTM) plays a foundational role in contemporary geomorphological
analysis, offering precise, scalable, and replicable representations of Earth’s surface morphology. As
an extension of digital cartography and remote sensing, DTM has transformed the way
geomorphologists conceptualize and quantify landform features, moving from qualitative, field-based
interpretation to high-resolution numerical models that support spatially explicit and multi-scale
analysis (Evans, 2012; Hengl & Reuter, 2009). A DTM is a digital representation of the Earth's bare
surface, typically constructed from elevation data obtained via remote sensing techniques such as
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LIDAR, photogrammetry, radar interferometry, or satellite altimetry (Wilson & Gallant, 2000).
It provides the foundation for a wide array of terrain derivatives, including slope, aspect, curvature,
flow accumulation, and topographic wetness index, which serve as inputs for geomorphological,
hydrological, and ecological models.

In geomorphology, DTMs enable the quantitative analysis of landforms, allowing for
systematic classification, process modelling, and landscape evolution studies. For instance, detailed
curvature analysis of a DTM can reveal erosional vs. depositional regimes, while slope and aspect
support assessments of hillslope stability, solar radiation balance, and soil redistribution (Minar &
Evans, 2008). Moreover, multi-resolution analysis using DTMs allows researchers to examine both
fine-scale microtopography and large-scale tectonic or fluvial structures within a unified framework
(Florinsky, 2012).

DTMs also serve as the input layer for terrain classification algorithms, including both
supervised and unsupervised approaches. For example, geomorphometric classification schemes like
the Ilwahashi and Pike method (2007) and the Geomorphons approach (Jasiewicz & Stepinski, 2013)
rely heavily on DTM-derived morphometric variables to segment terrain into meaningful units based on
form, process, or genesis.

Despite their strengths, DTMs are not without limitations. The accuracy of a DTM is highly
dependent on the resolution, sensor quality, and terrain complexity. Therefore, careful pre-processing,
error assessment, and appropriate scale selection remain essential components of DTM-based
geomorphological research (Wechsler, 2007).

In conclusion, Digital Terrain Modelling has revolutionized the field of geomorphology by
enabling detailed, objective, and reproducible terrain analysis across spatial and temporal scales. It
supports both fundamental research on landform dynamics and applied studies in natural hazard
assessment, land management, and environmental monitoring. By incorporating fractal analysis as a
modern mathematical tool, this study introduces an innovative approach that provides a novel
perspective on the subject.

Study area

The object of present study is topography of Republic of Bulgaria (Fig. 1). Bulgaria is located
in Southeastern Europe, occupying the eastern part of the Balkan Peninsula. It lies approximately
between 41°14' and 44°13' N latitude, and 22°21" and 28°36' E longitude, covering a total area of
about 111,000 km2. The country is bordered by Romania to the north (along the Danube River), Serbia
and North Macedonia to the west, Greece and Turkey to the south, and the Black Sea to the east.
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Fig. 1. Location map of the study area
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Topographically, Bulgaria exhibits pronounced relief diversity, dominated by alternating
mountain ranges, basins, and plains. The Balkan Mountains (Stara Planina) run horizontally through
the center of the country, forming a natural climatic and geographic divide. To the south, the Rila,
Pirin, and Rhodope Mountains form part of the Alpine orogenic system, with Musala Peak (2,925 m) in
Rila being the highest point in both Bulgaria and the entire Balkan Peninsula.

Northern Bulgaria is primarily composed of the Danubian Plain, characterized by gently rolling
terrain and loess plateaus. In contrast, the Upper Thracian Plain in the south-central region is a
lowland basin known for fertile soils and agricultural use. The Struma and Maritsa river valleys provide
key lowland corridors and are aligned with active tectonic zones and grabens, contributing to both
seismic activity and geomorphological complexity. This combination of mountains, plains, and river
systems results in a highly fragmented relief, offering a rich context for geomorphological
classification, terrain modelling, and land use analysis.

Methods and Data

Unsupervised nested-means algorithm for terrain surface classification

Within the present research the terrain surface analysis and classification have been
performed using the so called ,nested-means terrain classification”. The unsupervised nested-means
algorithm developed by Iwahashi and Pike (2007) represents a data-driven, objective methodology for
classifying landform types based solely on digital elevation model (DEM) derivatives. Unlike traditional
geomorphological classifications which often rely on subjective interpretation and qualitative
parameters, this algorithm utilizes a hierarchical clustering approach to categorize the land surface
according to its morphometric properties.

At the core of the method is the extraction of three primary terrain variables derived from DEM
data: slope gradient, surface convexity, and surface texture. Slope gradient and convexity are
calculated using standard digital terrain analysis techniques, while surface texture is defined by the
local standard deviation of elevation within a fixed-size moving window, typically 3 x 3 or 7 x 7 pixels
(lwahashi & Pike, 2007).

The nested-means algorithm applies a non-hierarchical k-means clustering approach
iteratively. First, the terrain is partitioned into coarse classes using k-means clustering in the
multivariate space defined by the three morphometric variables. Subsequently, each initial cluster is
further subdivided by applying k-means clustering again within its data subset. This nesting procedure
is repeated until a predefined number of classes is achieved or until further subdivision yields no
significant improvement in classification homogeneity (Iwahashi & Pike, 2007).

The final output consists of automatically derived terrain classes that can be broadly
interpreted in terms of geomorphological features such as mountains, hills, plains, and depressions.
These classes correspond to common topographic patterns, but their identification is based entirely on
statistical properties rather than semantic labels. Notably, the authors demonstrate that a classification
into 16 terrain types provides an effective compromise between generalization and detail, useful for
continental- and regional-scale applications (lwahashi & Pike, 2007).

The Box-counting Method for Fractal Dimension Estimation

Surface complexity analysis is based on classical tool for fractal analysis — “box-counting
method”. The box-counting method is one of the most widely used techniques for estimating the fractal
dimension (D) of irregular spatial patterns, particularly in geographical and geomorphological
analyses. It is especially suited for analysing complex natural structures such as coastlines, drainage
networks, topographic surfaces, and land cover boundaries (Mandelbrot, 1983; Lam & De Cola, 1993).

The basic principle of the method involves overlaying the object or binary raster with a grid of
square boxes of size €, and counting the number of boxes N(g) that contain part of the object. This
process is repeated for progressively smaller box sizes. The fractal dimension D is then estimated
using the logarithmic relationship:

1) Fractal Dimension (D) = log(N(g)) / log(1/¢)

Where:
- N(¢) is the number of boxes of size € that contain part of the object.
- £ is the side length of the box (scale).
- D is estimated as the slope of the linear regression line in a log-log plot of N(g) versus 1/«.

In practice, a log-log plot of N(¢) versus 1/¢ is constructed, and the slope of the linear portion
of the curve is taken as an estimate of D. The closer the fit (often measured by the coefficient of
determination R?), the more reliable the dimensions estimate are.
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The box-counting dimension reflects the scale-invariance and space-filling capacity of the
analysed object. For instance, a value of D close to 2 indicates a highly fragmented, space-filling
structure on a 2D surface, while values closer to 1 imply linear or less complex patterns.

This method has been effectively applied to digital elevation models (DEMs), where elevation
contours or slope threshold masks are binarized, enabling fractal analysis of terrain roughness and
landform complexity (Sanchez et al., 2006; Florinsky, 2012).

DEM data

Terrain surface analysis of the study area was performed using digital elevation data acquired
by EU-DEM v1.1. The EU-DEM v1.1, developed under the Copernicus Land Monitoring Service, is a
pan-European digital surface model (DSM) with a 25-meter spatial resolution. It is derived through the
fusion of two global elevation datasets: the SRTM (Shuttle Radar Topography Mission) and ASTER
GDEM (Advanced Spaceborne Thermal Emission and Reflection Radiometer). The fusion process
involved weighted averaging, void-filling, and smoothing to ensure consistency across Europe’s
diverse landscapes (EEA, 2019).

EU-DEM data are referenced to the ETRS89 / LAEA Europe projection (EPSG:3035) and are
distributed in 1° x 1° tiles. As a DSM, it includes elevation values that reflect not only ground surface
but also vegetation and built structures. While this may limit its use for bare-earth analyses, it remains
highly valuable for regional-scale terrain modelling, hydrological assessments, and landform
classification.

Results and Discussion

The results obtained in this study are summarized in Table 1 and Figure 2. The main
conclusions and interpretations are discussed further.

Table 1. Terrain surface classification within the study area. The numbering of the terrain classes is in accordance
with the original nomenclature of Iwahashi and Pike (2007)

Ne Name of class INCEX (D) SHEICRO R TN C) D
1 very steep slope, fine texture, high convexity 9869.7675 14.91 1.53
2 very steep slope, coarse texture, high convexity 3331.7194 5.038 1.39
3 very steep slope, fine texture, low convexity 7502.9450 11.33 1.51
4 very steep slope, coarse texture, low convexity 3710.1213 5.60 1.41
5 steep slope, fine texture, high convexity 3974.5006 6.00 1.44
6 steep slope, coarse texture, high convexity 5126.9825 7.74 1.47
7 steep slope, fine texture, low convexity 3677.6869 5.55 1.42
8 steep slope, coarse texture, low convexity 5121.4094 7.73 1.47
9 moderate slope, fine texture, high convexity 1311.5325 1.98 1.16
10 | moderate slope, coarse texture, high convexity 4603.0156 6.95 1.46
11 moderate slope, fine texture, low convexity 1128.1831 1.70 1.12
12 | moderate slope, coarse texture, low convexity 4129.5394 6.24 1.44
13  gentle slope, fine texture, high convexity 474.4788 0.72 0.92
14 | gentle slope, coarse texture, high convexity 5871.4144 8.87 1.46
15  gentle slope, fine texture, low convexity 782.1044 1.18 0.99
16 | gentle slope, coarse texture, low convexity 5597.5606 8.45 1.43
- Total 111000.00 100.00 -
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Fig. 2. Spatial distribution of terrain surface types within the study area

This study presents a morphometric classification of terrain types based on three key
variables: slope gradient, surface texture, and surface convexity. A total of 16 distinct morphometric
classes were identified and quantified. Each class was analysed in terms of its spatial extent,
percentage of total coverage, and associated fractal dimension (D), a parameter reflecting surface
complexity and geomorphological heterogeneity. The largest class by area is "very steep slope, fine
texture, high convexity," covering 9,869.77 km?, equivalent to 14.91% of the total area, with a high
fractal dimension of 1.53. This suggests significant surface complexity, likely due to erosional and
tectonic processes prevalent in such terrains. Similarly, classes with steep slopes and fine textures
(e.g., Class 3 and Class 5) also demonstrate elevated D values (> 1.4), underscoring the influence of
fine soil materials on terrain intricacy, particularly when combined with high slope gradients.
Conversely, terrain types characterized by gentler slopes and fine textures exhibit substantially lower
fractal dimensions. Notably, Class 13 ("gentle slope, fine texture, high convexity") has the lowest
D value of 0.92, indicating a relatively smooth and homogeneous surface morphology. This is
consistent with the expected reduced complexity in low-relief environments dominated by depositional
processes or extensive weathering. Texture emerges as a key modifier of fractal dimension within
similar slope and convexity categories. Coarse-textured classes generally show slightly lower D values
than their fine-textured counterparts when slope and convexity are held constant. For instance, within
the steep slope and high convexity group, fine-textured Class 5 has D = 1.44, while coarse-textured
Class 6 shows a marginally higher D = 1.47, likely reflecting the roughness induced by larger grain
sizes. Convexity also plays a substantial role, with high convexity conditions correlating with higher
D values across most slope categories. This may reflect the increased micro-relief variation and
drainage dissection associated with convex landforms. However, exceptions exist, indicating possible
interactions between lithology, vegetation, and erosional regimes. In total, over 60% of the terrain falls
within steep or very steep slope categories, which predominantly exhibit higher fractal dimensions
(D>1.4), emphasizing the geomorphological dynamic nature of the landscape. Moderate and gentle
slopes, although contributing a smaller proportion to the total area, provide important contrast through
their generally lower D values and simpler surface geometry.

Geographically (Fig. 2), Terrain classes 1 through 4, characterized by very steep slopes with
varying texture and convexity, are dominantly distributed across the high mountain systems—most
notably in the Rila, Pirin, and western Rhodope Mountains. These classes collectively cover over 36%
of the national territory, aligning with Bulgaria’s alpine zones where rugged topography and high
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elevation gradients prevail. Classes 5 to 8, representing steep slopes, are widespread in transitional
mountainous regions such as Sredna Gora, the Eastern Rhodopes, and the Fore-Balkan. These areas
demonstrate intermediate relief energy and serve as morphological corridors between lowland basins
and high mountains. With a combined area share of roughly 26%, they are pivotal in Bulgaria’s
orographic structure. Moderate slope classes (9 to 12) show a more dispersed distribution, frequently
occurring in dissected hilly terrains and fluvial margins across the Danubian Plateau and western
Upper Thracian Lowland. These zones exhibit a balance between structural control and erosional
shaping, hosting both agricultural use and semi-natural landscapes. Gentle slope classes (13 to 16),
indicative of flat to gently rolling relief, dominate the country’s major lowlands—namely the Danubian
Plain, the Upper Thracian Lowland, and portions of the Burgas and Dobrudzha coastal plains. These
areas, comprising approximately 19% of the territory, are essential for intensive land use and
infrastructure due to their minimal relief constraints.

In conclusion, the spatial distribution of relief classes in Bulgaria reflects a complex interplay of
tectonic uplift, lithological resistance, and surface processes. The 16 Iwahashi—Pike classes not only
map topographic diversity with quantitative precision but also correlate strongly with the country's
established geomorphological regions. This framework enhances regional planning, landscape
ecology, and natural hazard assessment across Bulgaria's varied terrain.

Conclusion

In the present study, using unsupervised nested-means algorithm, a classification of local
terrain was made. Sixteen terrain classes were identified and extracted. The results obtained confirm
that the terrain surface within the study area is variable. The analysis reveals a clear correlation
between terrain slope, soil texture, and surface convexity with fractal dimension, serving as a proxy for
geomorphological complexity. Steep and fine-textured terrains, especially under high convexity, tend
to be the most complex, whereas gentle, fine-textured surfaces are the smoothest. These findings
have significant implications for erosion modelling, land use planning, and landscape evolution
studies. Such an approach provides broader opportunities for geomorphological research and offers
new insights into contemporary geodynamics by integrating internal and external processes of terrain
formation.
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