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Abstract 
We tackle the two-body problem associated to Hénon-Heiles’ renowned 

potential, using the qualitative analysis methods, for the limit situation of escape. 
The study of the infinity flow reveals many “exotic” features as regards behaviour 
of escape solutions. 
 

1. INTRODUCTION 
Hénon-Heiles’ potential [1] was intended to model the motion of a star 

within a galaxy. It reads 3
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In this paper we tackle the escape dynamics in the two-body problem 
associated to this potential, via qualitative analysis. Using McGehee’s 
techniques [2, 3], we construct the infinity manifold and depict the flow on 
it. We find many “exotic” features, which point out the complexity of the 
escape dynamics in this field. 

 
2. BASIC EQUATIONS AND SYMMETRIES 
Consider the relative motion of a unit-mass particle w.r.t. the field 

source. Its dynamics is associated to the planar Hamiltonian 
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in which 2
21 ),( Rq ∈= qq  and 2

21 ),()( Rqp ∈== pp&  are the 
configuration vector and the momentum vector of the particle, respectively. 

The system admits the first integral of energy, hH =),( pq  (energy 
constant), but, given the anisotropic structure of the potential, the angular 
momentum is not conserved. 
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To tackle the escape dynamics, we pass to polar coordinates ),( θr  and 
polar components of velocity ),( θ&& rr . Then we use the McGehee-type 
transformations [3, 4] 

,;),(),(; 2/12/31 dtdrryxr −− ρ=τθρ==ρ &&                             (2) 

which make the motion equation corresponding to (1) become 
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The energy integral reads  
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In (3)-(4), τ= dd /'  , and we kept , by abuse, the same notation for the 
new functions of τ  . 

Equations (3) have four symmetries: 3,0,),,,,( =τθρ= iyxSS ii : 
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which form an Abelian group with idempotent structure, isomorphic to 
Klein’s group. These symmetries are of much help in describing the escape 
dynamics (see below). 
 

3. INFINITY MANIFOLD AND THE FLOW ON IT 
Eqs. (3) are well defined for the boundary 0=ρ (escape), which is 

invariant to the flow, because 0' =ρ  for 0=ρ ; (4) also extends smoothly 
to this boundary. In this way, we obtain the infinity manifold (pasted on the 
phase space), provided by (4) with 0=ρ : 
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and the corresponding vector field, provided by (3) with 0=ρ : 
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We see that the flow on ∞M  is gradientlike w.r.t. x. We also see that ∞M  is 
never defined on the whole 1S , its shape and domains of existence 
depending on C and D.  

Let us depict the flow on ∞M . It has no physical significance, but – due 
to the continuity of solutions w.r.t. initial data – it yields valuable 
information about orbits that neighbour escape. We distinguish the 
following cases: 

(1.1) 0>= DC . ∞M  is homeomorphic to a 2D-elipsoid of axis length 
π  along θ  for ],0[ π∈θ , and Φ=∞M  else. By (7), the flow on ∞M  has 
two equilibria: )0,2,2/(),,( DyxE ±π=θ± . −E  is a source, +E  is a 
sink, whereas the rest of the flow consist of heteroclinic orbits that move 
from −E  to +E (Fig. 1). 

(1.2) 0<= DC . The case is identical to (1.1), but ]2,[ ππ∈θ  and 
)0,2,2/3(),,( DyxE −±π=θ± . 

(2.1) 00 >≠< DC . If 2/3DC ≤ , we have the same phase portrait 
as (1.1). If 2/3DC > , ∞M  is a “dumb-bell” in ],0[ π  with six equilibria: 

−
3,1E  (sources), +

3,1E  (sinks) and ±
2E  (saddles). Besides them, there are four 

permanent heteroclinic connections: source-saddle ( −− → 21 EE , −− → 23 EE ) 

and saddle-sink ( ++ → 12 EE , ++ → 32 EE ), and eight or four more 
heteroclinic orbits that form three different phase portraits (see Figs 2–4). 

(2.2) 00 <≠> DC . For 2/3DC ≥  and 2/3DC < , the flows are 
identical to those corresponding to the cases (1.1) and (2.1), but shifted by 
πw.r.t. ])2,[( ππ∈θθ .  

(2.3) 0,0 <> DC . ∞M  is homeomorphic to three disjoint 2D-
ellipsoids, spread on ]2,0[ π  along θ , on which the flow is identical to the 
case (1.1). 

(2.4) 0,0 >< DC . From a qualitative standpoint, this case is identical 
to (2.3), only the position of the ellipsoids along the θ -axis differs. 
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Fig. 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 
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Fig. 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 
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4. CONCLUSIONS 
Without proof, we state the main conclusions: 

• Escape solutions are not regularizable. 
• Escape solutions are of three different kinds: radial (with zero angular 

momentum), spiral (with nonzero angular momentum keeping its sign), 
or oscillatory (with the angular momentum alternating its sign). 

• The nonradial escape motion tends asymptotically to rectilinear escape. 
• The flow on the infinity manifold obeys three quite different scenarios, 

which are noncontradictory as regards uniqueness and symmetries. This 
means that there are hidden bifurcations we are not able to detect yet. 
However, following [4], we conjecture that saddle-saddle connections 
(Figs 3 and 4) are much more improbable (from the standpoint of the 
Lebesgue measure) than the connections illustrated in Fig. 2. 
This offers a wide understanding of escape dynamics in Hénon-Heiles’ 

model. 
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