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1. Introduction 

 

In works  [1,2], the rectification and the precise georeference of space 

images are examined, analyzed and mathematically grounded. For this 

purpose, many additional settings and requirements are made for the 

quantities used in the mathematical model, namely: the necessary spatial 

orthogonal coordinate systems are defined; the coordinates of the ground 

control points (GCP) Рj  (j = 1,2,...,8) are determined by GPS measures; the 

Earth's /referent/ ellipsoid being assumed as projection plane is taken, with 

reading of the ellipsoid's heights (fig.1) [2] .In the present work, these 

settings will be accounted for , but the attention will be focused on the issues, 

related with the possibility of approximation and extrapolation of the orbital 

elements at the moment the image was taken  tk . 
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Each satellite is characterized in the space area by it's initial elements for 

a given starting epoch t0 . These elements could be extrapolated and improved 

for the moment the image was taken  tk  (k = 1, 2…n) with some of the 

experimental orbital or numerical methods, by using: Kepler's elements in the 

inertial coordinate system ; orthogonal inertial coordinates 

and components of velocity ; spherical coordinates and 

components of velocities ; or numerical integration of 

the fluxional equations of motion, and others  [3, 4, 5 ,6].  
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 We shall consider that in the first stage, by a chosen orbital method, 

an extrapolation of the initial elements of the satellite is made, and the initial 

quantities of the satellite at the moment of taking the picture tk (k = 1,2…n) 

are determined. With  these 'transferred' quantities and the of the known GCP 

determined by GPS coordinates, according to [2] fluxional specification of 

the coordinates of the satellite at the moment tk , and the Oilers elements 

(Ω,i,ω,) could be made. 

 With the quantities thus obtained way, the orthogonal coordinates 

of the necessary control points of the image  (fig.2) in Greenwich coordinate 

system could be determined, i.e. the already known GCP of the area, by 

which the geometrical deformations could be eliminated.   

 

  

2. Approximation and extrapolation of the satellite's orbit, 

for the moment of taking the image tk . 

 

 To solve the problem, the inter orbit of the satellites for short 

intervals of time in spherical coordinate system [4, 7, 8] will be used. This 



way of extrapolation of the initial elements, provides a precise way of 

determination the spherical coordinates of the satellite   

which was used in the INTERCOSMOS  program while a specific software 

for processing was also made.  
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 The relation between the inter spherical coordinates    

and the rectangle coordinates  r   is given by [3, 4, 7]:  
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To extrapolate of the orbit for the moment  tk , the expressions, providing  

to determine both the coordinates (  and the components  of the 

velocities   [4, 8] are used: 
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The coordinates obtained for the moment of taking the image tk , must 

be corrected, accounting for the  gravitational and non-gravitational 

disturbances  [4, 10,11]. By the used method , even the smallest disturbances,  

influencing the motion of the satellite could be determined, after which they 

are summed to the expressions: 
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We have the spherical coordinates and components of the velocity 

 , the inertial spatial coordinates  ,   

according to eqs.(1) and components of the velocity  (  [4, (4.38)], of 

the satellite for the moment   from  eqs.(1), and the measured GPS 

coordinates of the GCP   .Then 
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By linearization of expressions (6) and taking into account the equation 

of floating differences, which is typical in using an orbital method, [4] we 

have: 
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The equation of the floating differences after abbreviation by 

cancellation in expressions (7), is written in the form: 
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ikU ′  - is determined from the coordinates of GCP - i ; and satellite - k , 

kjU  - are extrapolated coordinates of satellite -k ; 
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where: 
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The values of the coefficients of matrix (12) are defined from [4, (4.18)]. 

The vectors d  and  have the form: k0S idR
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In this case, when the GCP are defined  by GPS  measures , d  could 

be placed in  (19) , after which from  eqs.(1) it is obtained : 

0=R
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The solution of the equation of floating differences (20), provides to 

obtain the unknown corrections  from (16) and from (1) the values 

  in inertial coordinate system which could be taken as a first 

approximation, namely:  
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3. Fluxional specification of the coordinates of the satellite 

for the moments  tk  and defining the Oiler's elements (Ω, i, ω,). 

 

Upon having obtained in first approximation the coordinates of the 

satellite  , in the moments of taking the image tkZYX ),,( 111
k  (k = 1,2…n)  and 

having the defined coordinates (Xi, Yi, Zi)  from the GCP, it is possible to 

accomplish the ultimate goal -  time-coordinate georeference of the space 

image with the defining of the decode places and identified points (fig.1) in 

the Geenwich geocentric coordinate system OXYZ, firmly related with the 

rotating Earth. We will accept: that the beginning of the coordinate system O 

to coincide with the Earth's mass center or with the Earth's /referent/ ellipsoid 

center; the movement of the poles is accounted for. 



Below we shall use the fundamental equation of space photogrametry  

[2, 9, 12] (fig.2) for fluxional specification of the satellite orbit: 
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In each direction of the centric-satellite distance-vector  to the GCP i, 

'intersects' the topographic image in 

0
kiρ

i  , which provides for the fundamental 

equation (22) to be presented in the form of the Greenwich coordinate 

system, by the expression (fig.2 and 3): 
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where: 

tii fyx  - are the coordinates in the topographic coordinate system of the 

space image (fig.3) ; 
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system. 

For the orthogonal matrix Pk we have : 
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where P0 is an orthogonal matrix giving the orientation between the 

topographic and the star coordinate system ; 

Pi
*- operator giving the orientation of the star image towards the inertial. 

kP in matrix form is: 
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where   are the guiding cosines from the Oiler's angles, 

which in [2, (14)] are given by the indexes: Ω  . 
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Excluding the scale coefficient 
m
1  , equation (24) could be written in 

colinear form : 
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The linearisation of the equation (24), respectively (28), for every 

pictured GCP i, on the topographical image i  with coordinates ikx  and iky  

yields: 
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where:  

  T
kikiki yxu ),(= - the calculated values, with the obtained after 

each itegration coordinates according to (28); 

),( 000
kikiki yxu  - the measured coordinate from the of GCP 's image.  

Because of some considerations shared above for the coordinates of 

GCP, we shall assume the equation of floating differences from (29): 
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By equations (31) we make several consecutive iterations, until  and 

 become smaller than the initial quantity ε , i.e. we have: 
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4. Coordinate georeference of the control points from the space 

image in the Greenwich coordinate system. 

Upon obtaining the specified values for the external-orientation of the 

space images according to (35), it is possible to define  the coordinates of the 

already known control points from the topografic image in the Greenwich 

coordinate system, by which we could remove the geometric deformations. 

According to the studies in [1,12,13,15], it is proved that the maximum 

control points must be 35-40, moreover, their optimal position on the photo is 

shown. 

In (29) we could put  , , 

and we will obtain the following equations of floating differences: 
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00 , kiki yx -are the measured values of the control points from the space 

image ; 

kiki yx , -the calculated values of the control points according to (28). 

It necessary, the equation of the floating differences could be solved by 

iteration, by introducing in (28) the coordinate of the control points obtained 

after the last iteration. 

 

Soures: 


