Using an orbital method and GPS measures of the ground control

pointsin the geor efer ence of the space images

N.Georgiev, R.Nedkov, D.Nedelcheva

1. Introduction

In works [1,2], the rectification and the precise georeference of space
images are examined, analyzed and mathematically grounded. For this
purpose, many additional settings and requirements are made for the
quantities used in the mathematical model, namely: the necessary spatial
orthogonal coordinate systems are defined; the coordinates of the ground
control points (GCP) P, (j = 1,2,...,8) are determined by GPS measures; the
Earth's /referent/ ellipsoid being assumed as projection plane is taken, with
reading of the ellipsoid's heights (fig.1) [2] .In the present work, these
settings will be accounted for , but the attention will be focused on the issues,
related with the possibility of approximation and extrapolation of the orbital

elements at the moment the image was taken ty .
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Each satellite is characterized in the space area by it'sinitial elementsfor
agiven starting epoch to . These elements could be extrapolated and improved
for the moment the image was taken ty (k = 1, 2...n) with some of the
experimental orbital or numerical methods, by using: Kepler's elements in the

inertial coordinate system F = (i,Q,0,a,e, M), ; orthogonal inertial coordinates

and components of velocity R =(xY,zxY.2,; Spherical coordinates and

components of velocitiess = (¢ ,n,m,a',n’,m)g; or numerica integration of

the fluxional equations of motion, and others [3, 4, 5 ,6].



We shall consider that in the first stage, by a chosen orbital method,
an extrapolation of the initial elements of the satellite is made, and the initial
quantities of the satellite at the moment of taking the picture t, (k = 1,2...n)
are determined. With these 'transferred' quantities and the of the known GCP
determined by GPS coordinates, according to [2] fluxional specification of
the coordinates of the satellite at the moment t, , and the Oilers elements
(Q,i,m,) could be made.

With the quantities thus obtained way, the orthogonal coordinates
of the necessary control points of the image (fig.2) in Greenwich coordinate
system could be determined, i.e. the aready known GCP of the area, by
which the geometrical deformations could be eliminated.

2. Approximation and extrapolation of the satellite's orbit,
for the moment of taking theimage ty .

To solve the problem, the inter orbit of the satellites for short
intervals of time in spherical coordinate system [4, 7, 8] will be used. This



way of extrapolation of the initial elements, provides a precise way of
determination the spherical coordinates of the satellite s = (g,n,co,a’,n’,co)g

which was used in the INTERCOSMOS program while a specific software
for processing was also made.

The relation between the inter spherical coordinates S, = (& m,0),

and the rectangle coordinates r, =(X,Y,Z); isgivenby [3, 4, 7]:

X, = (¢ +£3)(1-n2) coso, ,

(1) Yo = \/(CZ +E,~k2)(1_nk2) sno, ,
Z,=Co +&n -

To extrapolate of the orbit for the moment ty , the expressions, providing

to determine both the coordinates (¢.n,0), and the components of the

velocities (¢'m',0"), [4, 8] are used:

E.>k ZamTII( ik :Zlaﬁlrllgl
i=0 i=0
(2) Ny = Zb0i15|i< ' nk’ = ziboﬂ:(l
i=0 i=0
(Dkzzcofcll( (Ok’ =ZICO|TII<_1
i=0 i=0
(3) T =i I AL At =t, —t, .

t - isdetermined time; |, =& +c™m? +¢, -
The coordinates obtained for the moment of taking the image t, , must
be corrected, accounting for the gravitationa and non-gravitational
disturbances [4, 10,11]. By the used method , even the smallest disturbances,

influencing the motion of the satellite could be determined, after which they
are summed to the expressions:



(4) 68 = ZSQ , on= Zn:&m; 0w = Z&ni ,

producing:

(5) ak:énp—i_sa ; nk :nnp+8n; ('Ok:o‘)np—i_S(’0 :

We have the spherical coordinates and components of the velocity
S=¢Emot'no) , the inertia spatia coordinates r, =(X,Y,2),
according to egs.(1) and components of the velocity (X,Y,2), [4, (4.38)], of
the satellite for the moment t, from egs.(1), and the measured GPS

coordinates of the GCP R =(X,Y,Z),.Then
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By linearization of expressions (6) and taking into account the equation
of floating differences, which is typical in using an orbital method, [4] we
have:
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The equation of the floating differences after abbreviation by

cancellation in expressions (7), is written in the form:
ds ds,
(8) Vi, = (A 1 I By, (dR(: J =(G,B)y {dR J"‘ Lo.s R

where:
(9) ij = A 'kj ‘]kj y



(10) I-u :Ui,k _UISj (RiSoj’tk _to) )

U/ - isdetermined from the coordinates of GCP - i ; and satellite - k ,

U, - are extrapolated coordinates of satellite -k ;
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for S, k,, F we have the expressions:
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The values of the coefficients of matrix (12) are defined from [4, (4.18)].
The vectors ds,, and dr, have the form:
(16) dS,, = (&, dn,,dwg,dg, dng, do,)"

(17) drR, = (dX;,dY,,dz,)" ,



(18) S, = Sy +dS; ,

(19) RI=R +dR" .

In this case, when the GCP are defined by GPS measures, dR=0 could
be placed in (19) , after which from egs.(1) it isobtained :
(20) Vy, =GydS; +Ly, ;PR -
The solution of the equation of floating differences (20), provides to
obtain the unknown corrections ds from (16) and from (1) the vaues

r, = (X4YhzY, ininertial coordinate system which could be taken as a first

approximation, namely:

g =87 +dg ,
(21) Me=n"+dn ,
o, =0’ +do ;
(22) and from (1) it is obtained: r, =(X4Lyhzh, .
3. Fluxional specification of the coordinates of the satellite

for the moments tx and defining the Oiler's elements (2, I, ®,).

Upon having obtained in first approximation the coordinates of the
satellite (X*,Y%,zY), , in the moments of taking the image t, (k= 1,2...n) and
having the defined coordinates (X, Y, Z) from the GCRB, it is possible to
accomplish the ultimate goal - time-coordinate georeference of the space
Image with the defining of the decode places and identified points (fig.1) in
the Geenwich geocentric coordinate system OXYZ, firmly related with the
rotating Earth. We will accept: that the beginning of the coordinate system O
to coincide with the Earth's mass center or with the Earth's /referent/ ellipsoid

center; the movement of the polesis accounted for.



Below we shall use the fundamental equation of space photogrametry
[2,9, 12] (fig.2) for fluxional specification of the satellite orbit:

(23) pi =—(. -R) k=1,2.....n i=1,2...... 10
In each direction of the centric-satellite distance-vector p? to the GCPI,

'intersects the topographic image in i , which provides for the fundamental
eguation (22) to be presented in the form of the Greenwich coordinate

system, by the expression (fig.2 and 3):

X Xi_Xk
(24) 7-.* :iskpk Yi_Yk )
_f Py 7 _7

where:

X y. f, - are the coordinates in the topographic coordinate system of the
space image (fig.3) ;

B ascae coefficient ;

1_Ag
m Py

Ag =yx2+Yy’+ 12 - ascalefactor ;
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(25) S, =|-sinS cosS 0
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- is a matrix for transformation in to Greenwich coordinate

system.
For the orthogonal matrix P, we have :
(26) P = ( P Pi*)T
where Py is an orthogonal matrix giving the orientation between the
topographic and the star coordinate system ;

P/ - operator giving the orientation of the star image towards the inertial.
P inmatrix formis:



a a, 8,
(27) P = bl bz b3
G G G

where a,b,c (i=1 2, 3) arethe guiding cosines from the Oiler's angles,
whichin[2, (14)] are given by the indexes. @',i",0" .

Excluding the scale coefficient % , equation (24) could be written in

colinear form:
X, = 81(X X)+a,(Y -Y)+a(Z -Z)
(29) | (X — X ) +,(Y = Y,) +¢(Z - Z,)
Yo = — bl(X X)+b (Y -Y)+b(Z -Z,)
SRYG R B s p A

The linearisation of the equation (24), respectively (28), for every
pictured GCP i, on the topographical image i with coordinates x. and y,

yields:
- = _ =0/g0 =0 Ouy ;
U + duy _uki(xki’yki)+md(gll’m)k +
(29) e
6‘3”—k'd(x,\{,2)k % gix.v,2),
(X,Y,2), a(X,Y,Z),
where:

U, = (X, - the calculated values, with the obtained after

each itegration coordinates according to (28);
u.(x2,yy) - the measured coordinate from the of GCP 'simage.

Because of some considerations shared above for the coordinates of

GCP, we shall assume the equation of floating differences from (29):
(31) VU. = (Gk’ Bk)(dSk]"‘ LU. ; PU‘ ;
ki drk ki ki

(32) ds, = (dQ,di,dw)," ;
dr, = (dX,dY,dz)," ;

(33) L, =U¢—T, ;
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(34)

By equations (31) we make several consecutive iterations, until ds, and

dr, become smaller than the initial quantity ¢, i.e. we have:

Q, = +dQ; +d +..., X, = Xy +dX? +dX; +...
(35) =iy +diZ +did +..., Y, =Y +dYZ+dY2+ ...
o, =0, +do/ +do] + ..., Z, =Z;+dz} + dZ} +... .
where n=23,...... ,
ds = (dQ7,di", o) <g! | dr = (dX",dY,",dz") " <g?2 .

4. Coordinate georeference of the control points from the space
image in the Greenwich coor dinate system.

Upon obtaining the specified values for the external-orientation of the
space images according to (35), it is possible to define the coordinates of the
already known control points from the topografic image in the Greenwich
coordinate system, by which we could remove the geometric deformations.
According to the studies in [1,12,13,15], it is proved that the maximum
control points must be 35-40, moreover, their optimal position on the photo is
shown.

In (29) we could put ds, = (d,di,dw),” =0 , dr, = (dX,dY,dz)," =0,

and we will obtain the following equations of floating differences:

(36) V, =AdR +L;
A = Ol _ (X, Yii)
(37) o(X.,Y,Z), 9(X.Y,2),

dR = (dX,dY,dz)T ;

(38) Ly, = Uk(i) —Uy =




X. , y,-are the measured values of the control points from the space

X , ¥, -the calculated values of the control points according to (28).

It necessary, the equation of the floating differences could be solved by
iteration, by introducing in (28) the coordinate of the control points obtained
after the last iteration.
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