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INTRODUCTION 
 

The analysis of oscillations and vibrations is usually reduced to the problem of a non-linear 
oscillator, subjected to external periodic influence (perturbation). With the development of perturbation 
methods, two main directions have formed: canonical (Hamiltonian) methods and non-canonical (non-
Hamiltonian) methods.  
 The development of these two main directions as well as an overview of the principal methods of 
analysis of perturbed nonlinear oscillator are given in [1]. 
 The present work compares the results obtained by different perturbation methods. It is shown that 
the solutions using action-angle variables (obtained through canonical transformations) and those obtained 
using Kuzmak’s method produce equivalent results. 
  
GENERATING SOLUTION 
 
Consider a generalized non-linear oscillator described by the following system of equations: 
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/the latter means that (  is limited in the neighborhood of / )dt/)t()(/1 0=µ
 In (2) Г is the circular frequency of external influence,  is the period of external influence. )(/2 tΓπ
 We are looking for a solution of (1), synchronous with the external influence, i.e. with  which 
has circular frequency: 
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 That yields for the non-autonomous regime/in the presence of synchronizing influence/:  
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 Let’s now consider the generating solution in non-autonomous regime by making the substitution: 
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The functions /8/ satisfy the generating system when condition (7) is satisfied, i.e.  
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A new integration constant A is introduced: . Then Ω= /Ato
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We introduce the new functions: 
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From (4), (9) and (10) follows the system of equations: 
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or, equivalently: 
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PERTURBING IN ENERGY-ANGLE VARIABLES 
 
 Below we solve the perturbed equation (1) applying the method of varying coefficients: we assume  
E = E(t) and A=A(t). We seek a solution of the form: 
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From here and (11) it follows: 
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Substituting in (1) and taking into account (11) gives: 
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The system of equations (13) can be written in the form: 
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We seek a solution having the asymptotic form (5) and (6) and also: 
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 Substituting (15) and (16) in (14) we expand in series with respect to . In front of  we get: µ 1µ
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 On the right-hand side appear . Averaging with 
respect to time t and taking into account (17) gives: 
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 In addition to these equations expression (4) should also be considered. Then U  and U  can be 
found in analogy with the asynchronous case, described in [1]. Synchronization or frequency lock-on will be 
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where all the initial approximations have been substituted in. 
 
PERTURBATION IN ACTION-ANGLE VARIABLES 
 
 We will first determine the generating system of Hamilton’s canonical equations. The corresponding 
Hamiltonian has the form : 
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 We look for a generating function W  such that the new momentum ),,( TJxor p  is a constant, which 
we denote by J, i.e. J = p . The new coordinate x=Ψ  represents angle. Then: 
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 We now express x, p through the variables J, Ψ: 
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 The generating system is then represented as: 
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and det  (the condition for applicability of the perturbation method in this case is ). 1orZ −= ∞≠ ,0orZ
 We now solve the perturbed system of equations (1). The perturbation is non-Hamiltonian. For this 
reason we approach it with the averaging method. We try to find a solution by varying the constants (23): 
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Substituting (24) in (1) we get: 
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 The system of equations (25) can be written in the form: 
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 We now seek an asymptotic expansion: 
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 The initial approximation has the form: 
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COMPARISON WITH KUZMAK’S METHOD IN MATRIX FORM 
 
 Above, in the consideration of a synchronous non-linear oscillation when using the non-canonical 
/non-Hamiltonian/ perturbation method in energy-angle variables as well as when using the canonical 
approach in action-angle variables, we assumed the detuning ξ in the system to be a known function. Here, 
on the contrary, ξ will initially be considered as an independent variable and any definite substitutions will 
only be made at a later stage.  
 We again consider a generating system in the form (9) where ξ=const is for now an independent 
parameter.  
 The solution of (9) is represented in the form: 
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 From (9), taking (30) into account, we obtain the following variational equation: 
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 We now solve the system of equations (1). It is expressed in the following equivalent form: 
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 We seek a solution in the form: 
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where t  and also: A
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 In this way we initially found Ξ and only then considered the constant period functions  bb px , .
 Having /35/ as a basis to stand on we can write: 
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 We look for a solution by representation with an asymptotic series: 
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where , k =1,2,3,… 
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 From (9) and (35) it follows: 
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 Substituting /37/ in /34/ and taking into consideration /38/ we get: 
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 Developing in a series in the powers of , k=1,2,3, … we get in front of : Kµ Kµ
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 The solution of (39) and, in particular of (40), is sought by variation of the constants. 
 Let: 
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 Taking into account (32) from (39) it follows: 
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Below, for brevity, the index “k” is omitted. From (43) it follows that: 
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 Integrating (44) by parts we obtain: 
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 Substituting in (42) and taking into account (33) as well as the fact that Q , we get: 0=

U Y HN Q D Q V D Q L Q V K Q K(, ) { [ ( , ) ( ) ( )] [( ) ( , ) ]tT
g

t
T T T t t To= − + − + − + − + −

2

2
0 1 0

1 2
}

)T

)

 

 The matrix function U will be periodic with respect to t under the condition that QD=0 and 
 for the satisfaction of which it is sufficient to do the substitution: D Q L V( ) [ ( )] ( , ]T T= + 0
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 Then we get: 
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and, in particular, to the first order ( ).  When k=1, from (41) and (47) it follows that: µ
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In this way we eventually obtained the system of equations (36), (46) and (47). 
 
CONCLUSION 
 

The analysis of the results obtained above leads to the important conclusion that: first, the initial 
approximation (29) obtained in action-angle variables is equivalent to the initial approximation (20) obtained 
in energy-angle variables; and, second, the equations obtained by Kuzmak’s method are equivalent in first 
approximation / / to the corresponding equations obtained by the non-canonical perturbation approach in 
energy-angle variables /see equations (48) and (20)/. The obtained results support the idea, particularly in the 
context of the analysis of a non-linear oscillator under external synchronizing influence, that the non-
canonical /non-Hamiltonian/ and the canonical /Hamiltonian/ methods do not differ in principle. We must  
note at this point that, in the theory of nonlinear oscillations, a number of other methods exist that are not, 
even in first approximation, absolutely equivalent to the three methods presented above.  
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 Abstract. The term “Synchronous action” here encompasses all cases of frequency lock-on, 
frequency multiplication and division, phenomena of synchronization at commensurable frequencies. A non-
canonical /non-Hamiltonian/ perturbation approach is presented for the study of non-linear oscillator under 
external synchronous action in “energy-angle” variables. The iteration constants of the initial solution are 
introduced to be the new variables. By applying consistently the method of canonical transformations and 
multiplying functions, a canonical approach in “action-angle” variables for analysis of the same system 
under similar conditions is developed. Both approaches are characterized by the transition, in the very 
beginning, to functions with constant period, and only then the necessary functional matrices are introduced. 
The same problem is studied on the basis of a version of Kuzmak’s method developed in a matrix form, for 
the case when, in the very beginning of the study, the system detuning is regarded to be an independent 
parameter. The conclusion is formed, on the basis of the performed analysis, that the equations and the first 
approximation of the respective solutions when using the three basic approaches mentioned above are equal 
to each other. In particular, this conclusion is a contribution to the idea that there is no principal difference 
between the non-canonical /non-Hamiltonian/ and the canonical /Hamiltonian/ methods. However, attention 
is drawn to the fact that some of the other existing analytical methods developed in the frames of the Theory 
of Non-linear Oscillations could not give, even in the first approximation, a complete coincidence with the 
solution obtained using the three approaches mentioned above. 
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