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Introduction

As the history of research development shows, revea-
ling of generation mechanisms in planetary magnetosphere radio sources is
connected with the level of understanding of physical phenomena and the con-
cept development in modern radiophysics. The most vivid example is the in-
vestigation of cyclotron maser processes and the subsequent discovery of si-
milar processes in the nature of all magnetized planets [1-4].

[t has been shown [4-7] that a discrete spectrum of stable amplitudes of
an oscillatory system exists when the system is subjected to an inhomogeneous
force at a frequency which is much higher than the resonant frequency of the
oscillatory system. In the case of pendulum considered in [5], the interaction
nonhomogeneity has been especially arranged — by restriction of external
harmonic force action over small part of the trajectory.

When electromagnetic wave interacts with resonators, the eflect of “quarn-
tization” of possible stationary stable oscillating amplitudes arises without
satisfying any especially organized conditions (like the inhomogeneous action
of external harmonic force).

An electric charge, moving on a circular orbit in a homogeneous permanent
magnetic field is considered, When the charge is irradiated by a flat electro-
magnetic wave having a length commensurable with the orbit radius, an ef-
fect of discretization of the possible stable orbit radii has been observed.

A recurrent expression for the possible stable radius values (corresponding-
ly, for the possible rotation speed values) is derived. It is shown, that a radius
threshold values exists that for the values aboveit, a discretization of the pos-
sible stable radius values arises.
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A stability general investigation is carried out.

Analysis

Let us consider electric charge g in magnetic field B
and electric field E. The egquation of motion in three-dimensional Euclid’s
space is,

0)) m——-F gE+V X B)y—2mpV,

where m is.the mass of the moving charge.g, . V—» . is the velocity, B is coc-

fficient of dissipation.
Considering ‘Eq. (1) and assuming that the motion is in the plane z=0,
we can write:

dV

m—=-=q(E;+ VyBo)—2mpV,,
(2)
m—---—-:q(E — V, By)—2mpV,y.
For constant magnetic field B=e,B,=const the cyclotron frequency
B,
&) wy=—1L22-

Taking into account Eq. (3), Egs. (2) take the form
av '

e B 02V
®

av, &

W: _-Fo Ey+wovx_2ﬁVy'

A solution, corresponding fo rotation plus drift is sought in the form
(5 : x=RcosW+at, y=Rsin¥+df, Y=wi+0q,

where R, ¢, a, b are constanis in the stationary regime, o= const. '
Let us introduce the sign { ) dencting the averagmg by time £. Then
the values @, & can be found from the next equations:

-—g—;’(Ex)—mub—QBa;d; .
(6) i 2
— 3 (B +0,a—2B6=0. -

Integrating (4), we can write
Vx= _:“’_ff f_E;dt—;ojoy—.:QBx+c_onstl} _
0

Vy = ———-nydt-f-mux Qﬁyﬁ—constn
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Negiecting 22 and % fiom 5) we obtain
g af dé

V,= g;f_: —wR sin ¥ + % cos ‘P—-i—TRSih q’#—@
=g = @RcosY 4 ar S¥+—- cos'r +4.

The substitution of (8) into (7} gives:

dR dp ! Wy | -
& Cos¥— g Rein¥=— 9 j Edt—a—aght

o —2Bat +{w—wy)R sin W—2BR cos ‘P—}-constl,
R

— Sin W +%(§ Rcos‘i’:——%—i fﬁ}dt——b—l-moat

—2Bbt—(o—ay)R cos ¥ —2BR sin ¥ + const,.

Considering (9) it gets clear how const, and const, have to be determined
for the constant part of the Egs. {7} to be fallen out.
Considering also (6) we can write

(10 a) %’; cos ‘{’—%Rsin Y= = gﬂ (periodical part of fExdt)
+ (0—w,) R sin ¥— 28R cos P,

oy | Rsinws Lpcosy— —5 {periodical part of f Eyat)

—{w—@g)R cos ¥ —2BR sin ¥,
From Egs. (10} we have

4R w, i
1 = Yo gt
(11 a) at B, l_ cos P(perlodtcal part of fEx dt)
—sin ¥ (périodicai part of nydt )] — 28R,

(11b) r_g:ﬂz T{( —gi[ sin ¥ (pe_r_iodical part of IExdt)

| —cos¥ (periodi_cal part of j Ey_dt)]—_(m—mu_}.

We consider a plane elecvti-omagnetic' wave (i e. E.k=0, where k is wave
vector), E~vcos (Vf~k x—bkyy—kz4a) o =
Let us assume that £,=%,=0 and ky=Fk Then £,=F,=0 and

12 - Ei=—kEycos [(V—kby t—ER sin ¥ +a].

Assuming that v=v—gb and —kEy=F,, Eq. (12) can be rewritten in the
form ity e 1 eI

(13) £, =Eycos{vi+a—ERsin¥).
We assume : '



(14) v=Ne, N=1,2,3,..

For the sake of solving Egs. (I1) and considering Eq. (13), we derive the
tollowing expansions:

(15) cos‘{’[periodical part of f cos (vt — ERsin¥ + ) dt]

Jo{kR}

= finite part{ {sin (N—1)of+o— cp]+sm{(N+1)®t+a+tp]}

;1 Ty (RR) {sin [{2/4+N— Dot {2/ - Dp-+al4sin {2/4 N+ Lot 424 Ho+a]

o 207+ Ve

“sin (27— N— oot +(2j— Do —al-+sin [(Zj— N+ Dot +2j+o—a)
+ 22j—-Nyn

. in [(2j—2—N)ot +{2j— 2o —al +sin [(2j—Njat+2e—o]
i gh!—*(k"?){”l“ | A2—1-Njo

_sin [(2/— 24Nyt +(2/—2)p+-al+sin [(21+Nlm¢+21f!’+ﬁ1 }
AZj—1+Nw

(16) sin ¥ [periodic part of f cos(vt — kR sin¥ +a)dt]

= finite part { JUER){ cos [(N—1)ot—@+a]—cos [N+ Dot+o-+oj)

[(2j+N—-1jpt+2i—1p4a cos (2 +N+ Dot +(2j+ e+l
+ Z JB} (k}?) {cas J lm 2] 2(‘2}1—{-1'\")

cos [(2j—N— 1ot +(2j—1)p—a]—cos [(2j—N+Dot+(2/+1)e+a]
+ 2(2j—N)w

\ 21— N—2)it +(2] —2)ip— ] —cos [(2j— N)ot+2jp—al
+ 2 Ja}—l(kR)‘{ms L) i (12(2_;0_1_];\(;;‘;1 : =

_ cos[{2j+N =2t +(2j—2p+al—~cos [(2j+Net+2j0+al \],
Z2j— 1+ Njo

where J(.) are Bessel {functions of first kind.
Using (11} we can write the shortened (averaged) equations:

(17 a) (iﬁ) =20 Flcos W! periodical part
dt B,

O

o, B,

[ f cos (vi— kR sin ¥ +a) di ]} y—2BR,
1
R

(17 b) (‘2—'?): o o2 (sin ¥ {periodical part
1]

t
of U' cos (vi—ER sin ¥+ o) dt ]})-—-(@—ma).
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From (15), (16) and (17) we obtain
(18) {cos ‘P{ periodical part of [f cos {(vi—kR sin ¥+ o) gt ]})
%—% w(ER) sin (No—a), -
(19) {sin ‘P{ periodical part of [j Cos (VE—kR sin'¥ +) dt ]})

= g’:—g J(ER) cos [ngz—a)l,

where J,(.) is the first derivative of the Bessel function of the first kind.
Taking into account (18) and (19) Egs. (17) can be rewritten as

(20 a) (Er=fR, o)

(20 b) (52 y=g(®, o),

where

21 2) SR )= 22 )1 (kR) sin (N —a)— 267,

(21 b) &R, 0)=22 T s Sl kR) o8 (Np— ) — (0 — o),

The stationary solution corresponds to the conditions
ar ., do
(22) =0, (=0.-

For the sake of stability analysis we vary
AR _ O sy 0fs
@& = R OR+ 5,59,
(23) p
- P _ 98 sn., O8s

Using fr for o and g, fq Jdenbtenthe' dgrivafi\}e's —g‘% g—i; %%' and %% in
Egs. {23) for constant {stationary} values of R apd o, corresponding to the
stedy-state oscillations, the stability condition can be written

(24) e . . .[ée(xi‘s)<0’ Joag: erillens Lt
where )

f Fo— g &
25) ma=L2pfe s (T B s g,

since the time dependence of the small deviations of R and ¢ from their
steady-state values is governed by the equatfons OR=A;eM + A.eMt and
8= B,eM + Bye™!, where A,, Ay, By and B, are constants,

Considering Eq. (25) the condition (24) can be rewrsitten :as:
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{26 a)
(26 b)

fR+gm<0t
| frGo—Fugr> 0.
The partial derivatives can be expressed:

@y

| fr= % = TR + (=1 ) I (RR) |

fom 20 wa * (R cos (No—a),

(27) - 2 T

E
‘ Bo=— % Bo kszz IR sin (Np—a).

Considering Egs. (22} and {21}, Egs. (27) become

fo=—apr i o k( i;:;——l)fn,(k;?) sin (No—a),

o =2 —NJN(kR) cos (No—a),

(28)
E, 1 ’
= — ? (3—ayg) + % Bz NE? 2 J(RR) cos (No—uo),
N2 .
8o = — 2 2k iz Ju(kR) sin (Ng—a).

Combining, from (28) we can write

(29) St o= —4B—Fulp(p)sin,
(30) fago—Fogn =F3 %” [_(1—%23) OSO)

+ Fo[ 48 55 J3f0)sin -2 (@=00) T /3 {0) OS]+ (VB p)@— 00+ 4BV
where the following designations are introduced:

Uy

?B—k FO! kR=P» N(P'_'U':'}"

First we consider the case of small amplitudes, i. e. Ip|<1. In this case
we can use the following assimptotical expressions for the Bessel functions [8]

30 Jnlp) = ( ) 2 zif(Ni}l)' (L)m %(L)Nﬂ-
(32) Tik9) ==yt (S)N_l+"'

From (20}, (21) and (22) we find
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{33 a) Fod {p) siny=2Bp,

N
(33 b) Fy ra Jy(p)cosy=0—a,.
Substituting (31) and (32) inte (33) we determine
s 2P
tg ')’__my
(34) w L
o4 A (2B (0—ag?]

From (34) it is evident that the spectrum of the possible amplitudes is
uninferrupted and that there are no conditions for the amplitude discretization
in this case.

When |p{<1 and N>1, from (29) and (30) we find
(35) frtgo=—4p<0,

(36} r8o—fogr N> — )+ 4B2N2 >0,
1. c. the condition (26) is satistied and in this case the system motion is

stable.
Let us now consider the resonance case, which means

(37} ©—ay==0,
or considering Eq. (33 b) this is equivelent to

N
(38) | Fol 35 5 [o—ay),

Twao possibillties follow from Egs. (33):

a) Ju{p)=0 and cosy+0 or b) cosy=0.

We show that when the amplitudes are large {p>1) the motion in the
case a) is unstable as long as in the case &) motion is stable.

Case a),
(39) J{p)=0 and cosy-0.

Then J,(p)+=0. In Eq. (30) we neglect (0—wy,) and J,(p) in correspondance

FE e
with (37) and (39). We find: fogo—7fogr=— 02 JAp)+4pINVe. However from

(33 a) it follows

@ BRI e fage— folnm 4PN (1 ) <O
and apparently in this case the motion is unstable.
Case &),
{41) cosy=0, or
(42) siny={—1)"*, m=0; 1

(the two cases are possible, e. g. with adding = to v).
As here B is not of essential significance, for the sake of simplifying
we put
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(43) 8—0.
From Eq. (33 a) it follows
(44) Ji(p)=0.

The condition (44) determinc the possible discrete spectrum of ampli-
tudes p. These amplitudes do not depend on the force Ey (or Fy).
Taking into account Egs. (37), (41), (43) and (44), frem Eq. (30) we find

NE e
49) Tato—foge=Fy iz (1~ ) J3(0)
When
(46) p>N

from (45) it follows that the stability condition (26 b) is satisfied : fogo—fogn>0.
From (29) and (42) we obtain

(47) f;\»-I-g sy 45_(_ 1)"‘F0]N(p},

Seclecting the values for m, it is possible to satisfy also the second stabi-
ity condition (26 a): f, g, <0, or

(48) Fy sin y.Jy(p)>0.

Conclusions

The analysis shows the folowing two essential features
of the system considered.

L. Discrete set of possible stationary stable amplitudes is existing, which
can be approximately determined using the eq. {44) under {he conditions ex-
pressed by Egs. (38), (41), (46) and (48). s '

2. There exists a threshold for the amplitude, determined by ihe condi-
tion (46), that for the values above it the discrete states are stable.

The phenomenon of continuous oscillations excitation with amplitude
from discrete value set of stationary amplitudes has been demonstrated on the
basis of a common modet — oscillater under wave action. It is shown that
phenormenon manifesiation condilions are realized in a natural way in an os-
cillator system. interacting’ with a conlinuous eleciromagnetic wave.

Modelling system of oscillating charge under wave action has been consi-
dered. It has been shown that the continuous wave with spectral components,
considerably higher than the oscillator charge natural frequency, excites char-
ge oscillations with quasinatural frequency and amplitude belonging to dis-
crete value set of possible stalionary amplitudes, dependent only on Lhe ini-
tiat conditions. The considered model may be used {or phenomenological in-
vestigation of plasma particles with electromagnetic waves interactions and
waves in the Earth ionosphere and planetary magnetospheres. Hypothesis of
adaplive non-linear parametric wave generalion may be suggested for Solar
wind control of Jovian heterometric radiations, Saturn modulated radio emis-
sions and Uranian auroral kilometric radiations. The mechanism is connected
with natural interaction inhomogeneity and its type can be defined as cyclo-

tron instability in the generaiion processes.
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There is general agreement between researchers that planetary radiation
is emitted in extraordinary mode by maser cyciotron process and all celestial
bodies with magnetic field and energetic eleciron source are strong radicemit-
ters due to cyclotron maser instability. We hope'that the effect, presented in
our work, may throw a new light and enrich {he concept of generation mecha-
nisms.

We have presented a mechanism of cyclotron processes that might prove
fundamental considering planetary magnelosphere radioemission. It can be
shown that the mechanism may give rise to radicemission not only in narrow
range of angles almost perpendicular to the magnetic field in source region,
but any time when a wave packet falls upon the charged pariicle oscillator.

Here-with is shown the potential for excilation of low-frequency conti-
nuous oscillations with discrete amplitude set under the influence of wave
with incompatibly higher frequency — in that number fall waves from the
ultraviolet band, near and far IR range and the radioband. Possibly, {his me-
chanism is combined with multiple re-emission with frequency downward
transformation and collision mechanisms are accompanied by radicemission
generation mechanisms due to plasma waves transformation into electromag-
netic under the “wave-particle” and “wave — wave” interactions.

The mechanism may also be combined with maser cyclotron processes,
giving initial excitation (initial conditions) in the presence of magnetic field,
whereas later a wave pumping from eleciromagnetic background is added.

Radioemission spectrum characteristics might be determined by ihe pro-
perties of the discussed effect — on one hand, a wave wilh same (unchangeable)
frequency paramecter may cxcite osciilations in wide frequency band and dif-
{erent amplitudes; on the other hand — waves wilh different frequency para-
meters may excite oscillations with same frequency (e. g., in gyroresonance
frequency arca and local plasma frequency, due o the resonance effects).
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Huckperuzauus pafguycoB UHRAOTPOHHOIO JIBH-
JKEHNs SMCKTPHUECKOND "3apsifa B [OJe
3JIEKTPOMATHHTHON .ROJHBI -

Bm@umup H a.maée, .Hemp I eé,beieee
(Peanwme)

Pacemorpeiio ABHKEHHE SJEKTPHUECKOTC 3apAfa NG Kpy-
ropoit opluTe ‘B HEORHOPORUOM MariuurroM uode. Ilpu oSnyuerun sapsfia mao-
CKO# 3IEKTPOMATHHTHOH . BOJIHOH. ¢ RNUHON CPARHUMON C PaliHycoM OpPGHTH,
HabmofaeTcs 30diekT AMCKPETHSALUH BOZMOXHEIX YCTONYMBBIX PafMyCcoB Op-
GUTHL- - : : i

Brisengno pexyppentHoe: BHpaMenue AJs° BOIMONKILIX YCTOHUMBLHIX 3HAUE-
Huft pafivyca (COOTBETCTBEHNO, AJiA BOSMOMNIIBIX 3HAYEHHH CKOPOCTH Bpailielus).
[lokasano, 4To CyllecTByeT HOPOTOBOE  3HAYEHHE PAAMYCA, BhILIC KOTOPOLO BO3-
HHKAET JMCKPETH3AIMA BEJIMYAH BOSMOMIKIX YCTONUHBHIX DajHyCeoB.

[IpoBegeno. ofinee uecAefOBAHHE YCTORUHBOCTH. .
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